Over time, the movement of surface fluids has greatly changed Venus and Earth.
我的笔记 编辑笔记
A fluid is a substance, such as a liquid or gas, in which the component particles (usually molecules) can move past one another. Fluids flow easily and conform to the shape of their containers. The geologic processes related to the movement of fluids on a planet`s surface can completely resurface a planet many times. These processes derive their energy from the Sun and the gravitational forces of the planet itself. As these fluids interact with surface materials, they move particles about or react chemically with them to modify or produce materials. On a solid planet with a hydrosphere the combined mass of water on, under, or above a planet`s surface and an atmosphere, only a tiny fraction of the planetary mass flows as surface fluids. Yet the movements of these fluids can drastically alter a planet. Consider Venus and Earth, both terrestrial planets with atmospheres.
Venus and Earth are commonly regarded as twin planets but not identical twins. They are about the same size, are composed of roughly the same mix of materials, and may have been comparably endowed at their beginning with carbon dioxide and water. However, the twins evolved differently, largely because of differences in their distance from the Sun. With a significant amount of internal heat, Venus may continue to be geologically active with volcanoes, rifting, and folding. However, it lacks any sign of a hydrologic system (water circulation and distribution): there are no streams, lakes, oceans, or glaciers. Space probes suggest that Venus may have started with as much water as Earth, but it was unable to keep its water in liquid form. Because Venus receives more heat from the Sun, water released from the interior evaporated and rose to the upper atmosphere where the Sun`s ultraviolet rays broke the molecules apart. Much of the freed hydrogen escaped into space, and Venus lost its water. Without water, Venus became less and less like Earth and kept an atmosphere filled with carbon dioxide. The carbon dioxide acts as a blanket, creating an intense greenhouse effect and driving surface temperatures high enough to melt lead and to prohibit the formation of carbonate minerals. Volcanoes continually vented more carbon dioxide into the atmosphere. On Earth, liquid water removes carbon dioxide from the atmosphere and combines it with calcium, from rock weathering, to form carbonate sedimentary rocks. Without liquid water to remove carbon from the atmosphere, the level of carbon dioxide in the atmosphere of Venus remains high.
Like Venus, Earth is large enough to be geologically active and for its gravitational field to hold an atmosphere. Unlike Venus, it is just the right distance from the Sun so that temperature ranges allow water to exist as a liquid, a solid, and a gas. Water is thus extremely mobile and moves rapidly over the planet in a continuous hydrologic cycle. Heated by the Sun, the water moves in great cycles from the oceans to the atmosphere, over the landscape in river systems, and ultimately back to the oceans. As a result, Earth`s surface has been continually changed and eroded into delicate systems of river valleys-a remarkable contrast to the surfaces of other planetary bodies where impact craters dominate. Few areas on Earth have been untouched by flowing water. As a result, river valleys are the dominant feature of its landscape. Similarly, wind action has scoured fine particles away from large areas, depositing them elsewhere as vast sand seas dominated by dunes or in sheets of loess (fine-grained soil deposits). These fluid movements are caused by gravity flow systems energized by heat from the Sun. Other geologic changes occur when the gases in the atmosphere or water react with rocks at the surface to form new chemical compounds with different properties. An important example of this process was the removal of most of Earth`s carbon dioxide from its atmosphere to form carbonate rocks. However, if Earth were a little closer to the Sun, its oceans would evaporate; if it were farther from the Sun, the oceans would freeze solid. Because liquid water was present, self-replicating molecules of carbon, hydrogen, and oxygen developed life early in Earth`s history and have radically modified its surface, blanketing huge parts of the continents with greenery. Life thrives on this planet, and it helped create the planet`s oxygen and nitrogen-rich atmosphere and moderate temperatures.
段落大意:
第一段:由流体的概念引入话题:行星表面的流体运动
第二段:金星和地球被称为姐妹星,本段主要讨论金星不同于地球:1)与太阳的距离2)金星上没有任何水文系统。3)金星无法将水分以液态形式保存。4)金星的大气温室效应严重,地表温度极高
第三段:不同于金星,地球与太阳距离适中,稳定适中,使得水能以固、液、七三态存在,形成水循环(这些水结构二氧化碳形成碳酸盐沉积岩石,并在地表流动中通过多种方式改变地貌,最终液态水的存在,使得绿色植物出现在地球,进一步改造了地球大气。)
答案:BDE
题型:小结题
解析:
选项A,文章并没有提到金星火山活动比地球更频繁,且后半句信息错误(火山活动大大增加了大气中的二氧化碳含量),原文说“ Without water, Venus became less and less like Earth and kept an atmosphere filled with carbon dioxide.”;
选项B,对应第二段内容;
选项C,对应第三段最后一句,属于细节信息;
选项D,对应第三段内容;
选项E,前半部分对应第二段倒数第二句,后半部分内容对应第三段内容;
选项F,“The evaporation of liquid water from Earth’s surface”信息未提及。
如果对题目有疑问,欢迎来提出你的问题,热心的小伙伴会帮你解答。