Much of the ground is actually saturated with water.
我的笔记 编辑笔记
Groundwater is the word used to describe water that saturates the ground, filling all the available spaces. By far the most abundant type of groundwater is meteoric water; this is the groundwater that circulates as part of the water cycle. Ordinary meteoric water is water that has soaked into the ground from the surface, from precipitation (rain and snow) and from lakes and streams. There it remains, sometimes for long periods, before emerging at the surface again. At first thought it seems incredible that there can be enough space in the "solid" ground underfoot to hold all this water.
The necessary space is there, however, in many forms. The commonest spaces are those among the particles-sand grains and tiny pebbles-of loose, unconsolidated sand and gravel. Beds of this material, out of sight beneath the soil, are common. They are found wherever fast rivers carrying loads of coarse sediment once flowed. For example, as the great ice sheets that covered North America during the last ice age steadily melted away, huge volumes of water flowed from them. The water was always laden with pebbles, gravel, and sand, known as glacial outwash, that was deposited as the flow slowed down.
The same thing happens to this day, though on a smaller scale, wherever a sediment-laden river or stream emerges from a mountain valley onto relatively flat land, dropping its load as the current slows: the water usually spreads out fanwise, depositing the sediment in the form of a smooth, fan-shaped slope. Sediments are also dropped where a river slows on entering a lake or the sea, the deposited sediments are on a lake floor or the seafloor at first, but will be located inland at some future date, when the sea level falls or the land rises; such beds are sometimes thousands of meters thick.
In lowland country almost any spot on the ground may overlie what was once the bed of a river that has since become buried by soil; if they are now below the water's upper surface (the water table), the gravels and sands of the former riverbed, and its sandbars, will be saturated with groundwater.
So much for unconsolidated sediments. Consolidated (or cemented) sediments, too, contain millions of minute water-holding pores. This is because the gaps among the original grains are often not totally plugged with cementing chemicals; also, parts of the original grains may become dissolved by percolating groundwater, either while consolidation is taking place or at any time afterwards. The result is that sandstone, for example, can be as porous as the loose sand from which it was formed.
Thus a proportion of the total volume of any sediment, loose or cemented, consists of empty space. Most crystalline rocks are much more solid; a common exception is basalt, a form of solidified volcanic lava, which is sometimes full of tiny bubbles that make it very porous.
The proportion of empty space in a rock is known as its porosity. But note that porosity is not the same as permeability, which measures the ease with which water can flow through a material; this depends on the sizes of the individual cavities and the crevices linking them.
Much of the water in a sample of water-saturated sediment or rock will drain from it if the sample is put in a suitable dry place. But some will remain, clinging to all solid surfaces. It is held there by the force of surface tension without which water would drain instantly from any wet surface, leaving it totally dry. The total volume of water in the saturated sample must therefore be thought of as consisting of water that can, and water that cannot, drain away.
The relative amount of these two kinds of water varies greatly from one kind of rock or sediment to another, even though their porosities may be the same. What happens depends on pore size. If the pores are large, the water in them will exist as drops too heavy for surface tension to hold, and it will drain away; but if the pores are small enough, the water in them will exist as thin films, too light to overcome the force of surface tension holding them in place; then the water will be firmly held.
题型分类:总结题
文章结构分析:
这是一个说明型文章,主要讲的是地下水的存在。
第一段介绍了地下水的定义、来源以及与水循环的关系;
第二段介绍地下水出现最平常的地方是松散沙石微粒之间空间,而这些松散沙石物质通常存在于携带沉积物的湍流河水曾今流过的地方,为此举了一个冰河时期的例子,冰川融化形成的水流携带沉积物的例子。
第三段讲了现在的河流湖泊也会携带这样的沉淀物,从山谷流向平地,速度变慢,于是把沉积物沉淀到那儿,形成光滑扇形坡;沉积物在河水入湖口和入海口也会被沉淀,只要水流速度慢下来就行,经常是沉淀在湖底或海床上。
第四段讲低地几乎每个地方都覆盖了曾今被泥土覆盖的河床,那里的沙石沙砾也会充满地下水。
第五段开始讲非松散沉积物中储存水,原因是之前微粒的空间并没有完全被粘合化学物质占去,所以部分微粒可能在固化过程中或者之后被穿透的地下水溶化。导致的结果就是砂岩可能和形成它的松散沙子一样多孔。
第六段说任何沉积物,不管松散还是坚固,都有一部分包含空隙。大多数晶体岩很坚固,但有特例,玄武岩就是一个充满气泡的多孔晶体岩石。
第七段介绍了孔隙度,还讲了孔隙度与渗透性的差别。
第八段讲在干燥环境下,沉积物中有些水会留着,有些水会流干,总水量应该是包括两种水。
第九段讲是空隙的大小尺寸决定了水是否会流干。
选项分析:
Much of the ground is actually saturated with water. (很大部分地是充满水的)。
a)
b)
c)
d)
e)
f)
解析:选项一对,第二段“For example, asthe great ice sheetsthat covered …..”提到被冰川扩散;第三段“The same thing happens to this day, …..wherever asediment-laden river or streamemerges from a mountain valley onto relatively flat land,….”
选项二对,第二段讲到必要的空间在沙子和沙砾的微粒间的空隙中;第五段第二句“Consolidated(cemented) sediments, too , contain millions of minute water-holding pores.”
选项三对,最后一段讲到“What happensdepends on pore size.”最后一段也是为了解决倒数第二段提出的问题:什么决定哪部分水留下来,哪部分水流干?
选项四错,这是第一段的一个细节。
选项五错,原文没讲到basalt和sandstone一样。
选项六错,原文没有提到松散沉积物的基地typically都在曾今是水下的陆地。
因此,答案是:1,2,3;
如果对题目有疑问,欢迎来提出你的问题,热心的小伙伴会帮你解答。