Click on an oval to select your answer. To choose a different answer,
click one different oval.
我的笔记 编辑笔记
Photographic evidence suggests that liquid water once existed in great quantity on the surface of Mars. Two types of flow features are seen: runoff channels and outflow channels. Runoff channels are found in the southern highlands. These flow features are extensive systems-sometimes hundreds of kilometers in total length-of interconnecting, twisting channels that seem to merge into larger, wider channels. They bear a strong resemblance to river systems on Earth, and geologists think that they are dried-up beds of long-gone rivers that once carried rainfall on Mars from the mountains down into the valleys. Runoff channels on Mars speak of a time 4 billion years ago (the age of the Martian highlands), when the atmosphere was thicker, the surface warmer, and liquid water widespread.
Outflow channels are probably relics of catastrophic flooding on Mars long ago. They appear only in equatorial regions and generally do not form extensive interconnected networks. Instead, they are probably the paths taken by huge volumes of water draining from the southern highlands into the northern plains. The onrushing water arising from these flash floods likely also formed the odd teardrop-shaped "islands" (resembling the miniature versions seen in the wet sand of our beaches at low tide) that have been found on the plains close to the ends of the outflow channels. Judging from the width and depth of the channels, the flow rates must have been truly enormous-perhaps as much as a hundred times greater than the 105 tons per second carried by the great Amazon river. Flooding shaped the outflow channels approximately 3 billion years ago, about the same times as the northern volcanic plains formed.
Some scientists speculate that Mars may have enjoyed an extended early Period during which rivers, lakes, and perhaps even oceans adorned its surface. A 2003 Mars Global Surveyor image shows what mission specialists think may be a delta-a fan-shaped network of channels and sediments where a river once flowed into a larger body of water, in this case a lake filling a crater in the southern highlands. Other researchers go even further, suggesting that the data provide evidence for large open expanses of water on the early Martian surface. A computer-generated view of the Martian north polar region shows the extent of what may have been an ancient ocean covering much of the northern lowlands. The Hellas Basin, which measures some 3,000 kilometers across and has a floor that lies nearly 9 kilometers below the basin' rim, is another candidate for an ancient Martian sea.
These ideas remain controversial. Proponents point to features such as the terraced "beaches" shown in one image, which could conceivably have been left behind as a lake or ocean evaporated and the shoreline receded. But detractors maintain that the terraces could also have been created by geological activity, perhaps related to the geologic forces that depressed the Northern Hemisphere far below the level of the south, in which case they have nothing whatever to do with Martian water. Furthermore, Mars Global Surveyor data released in 2003 seem to indicate that the Martian surface contains too few carbonate rock layers-layers containing compounds of carbon and oxygen-that should have been formed in abundance in an ancient ocean. Their absence supports the picture of a cold, dry Mars that never experienced the extended mild period required to form lakes and oceans. However, more recent data imply that at least some parts of the planet did in fact experience long periods in the past during which liquid water existed on the surface.
Aside from some small-scale gullies (channels) found since 2000, which are inconclusive, astronomers have no direct evidence for liquid water anywhere on the surface of Mars today, and the amount of water vapor in the Martian atmosphere is tiny. Yet even setting aside the unproven hints of ancient oceans, the extent of the outflow channels suggests that a huge total volume of water existed on Mars in the past. Where did all the water go? The answer may be that virtually all the water on Mars is now locked in the permafrost layer under the surface, with more contained in the planet' polar caps.
题型分类:否定事实信息题
题干分析:对应第二段
原文定位:段落末句“Flooding shaped the outflow channels approximately 3 billion years ago, about the same times as the northern volcanic plains formed.”意思是大约在30亿年以前,北部火山平原形成的同时,洪水改变了外流通道的形状,对应A选项。段落第二句话“They appear only in equatorial regions and generally do not form extensive interconnected networks.”意思是它们只形成于赤道附近,并一般没有形成广泛的交错的网络,对应B选项。段落第三句“Instead, they are probably the paths taken by huge volumes of water draining from the southern highlands into the northern plains.”意思是相反,它们可能是携带大量水从南部高地到北部平原的排水系统,对应D选项。段落第四句“The onrushing water arising from these flash floods likely also formed the odd teardrop-shaped “islands” (resembling the miniature versions seen in the wet sand of our beaches at low tide) that have been found on the plains close to the ends of the outflow channels.”意思是由泛滥的洪水而产生的激流可能也形成奇怪的泪滴状小岛(就像是在低潮时湿沙地或海滩上看到的缩小版本一样),已经在靠近出流通道末尾处的平原上被看到,对应C选项。
选项分析:
C选项与原文不符,正确;
A选项是原文同义改写;
B选项是原文同义改写;
D选项是原文同义改写。
如果对题目有疑问,欢迎来提出你的问题,热心的小伙伴会帮你解答。