Click on an oval to select your answer. To choose a different answer,
click one different oval.
我的笔记 编辑笔记
Photographic evidence suggests that liquid water once existed in great quantity on the surface of Mars. Two types of flow features are seen: runoff channels and outflow channels. Runoff channels are found in the southern highlands. These flow features are extensive systems-sometimes hundreds of kilometers in total length-of interconnecting, twisting channels that seem to merge into larger, wider channels. They bear a strong resemblance to river systems on Earth, and geologists think that they are dried-up beds of long-gone rivers that once carried rainfall on Mars from the mountains down into the valleys. Runoff channels on Mars speak of a time 4 billion years ago (the age of the Martian highlands), when the atmosphere was thicker, the surface warmer, and liquid water widespread.
Outflow channels are probably relics of catastrophic flooding on Mars long ago. They appear only in equatorial regions and generally do not form extensive interconnected networks. Instead, they are probably the paths taken by huge volumes of water draining from the southern highlands into the northern plains. The onrushing water arising from these flash floods likely also formed the odd teardrop-shaped "islands" (resembling the miniature versions seen in the wet sand of our beaches at low tide) that have been found on the plains close to the ends of the outflow channels. Judging from the width and depth of the channels, the flow rates must have been truly enormous-perhaps as much as a hundred times greater than the 105 tons per second carried by the great Amazon river. Flooding shaped the outflow channels approximately 3 billion years ago, about the same times as the northern volcanic plains formed.
Some scientists speculate that Mars may have enjoyed an extended early Period during which rivers, lakes, and perhaps even oceans adorned its surface. A 2003 Mars Global Surveyor image shows what mission specialists think may be a delta-a fan-shaped network of channels and sediments where a river once flowed into a larger body of water, in this case a lake filling a crater in the southern highlands. Other researchers go even further, suggesting that the data provide evidence for large open expanses of water on the early Martian surface. A computer-generated view of the Martian north polar region shows the extent of what may have been an ancient ocean covering much of the northern lowlands. The Hellas Basin, which measures some 3,000 kilometers across and has a floor that lies nearly 9 kilometers below the basin' rim, is another candidate for an ancient Martian sea.
These ideas remain controversial. Proponents point to features such as the terraced "beaches" shown in one image, which could conceivably have been left behind as a lake or ocean evaporated and the shoreline receded. But detractors maintain that the terraces could also have been created by geological activity, perhaps related to the geologic forces that depressed the Northern Hemisphere far below the level of the south, in which case they have nothing whatever to do with Martian water. Furthermore, Mars Global Surveyor data released in 2003 seem to indicate that the Martian surface contains too few carbonate rock layers-layers containing compounds of carbon and oxygen-that should have been formed in abundance in an ancient ocean. Their absence supports the picture of a cold, dry Mars that never experienced the extended mild period required to form lakes and oceans. However, more recent data imply that at least some parts of the planet did in fact experience long periods in the past during which liquid water existed on the surface.
Aside from some small-scale gullies (channels) found since 2000, which are inconclusive, astronomers have no direct evidence for liquid water anywhere on the surface of Mars today, and the amount of water vapor in the Martian atmosphere is tiny. Yet even setting aside the unproven hints of ancient oceans, the extent of the outflow channels suggests that a huge total volume of water existed on Mars in the past. Where did all the water go? The answer may be that virtually all the water on Mars is now locked in the permafrost layer under the surface, with more contained in the planet' polar caps.
题目类型: 推理题
题干分析: 题目问依据三段能对火星水做的推断。题干中“火星水”的概念过于宽泛,采用选项定位。
选项分析:
选项A说,如果古代海洋存在于火星表面,其中的水很可能今天已经蒸发了。不能推出。该段提到ancient ocean,但不能推断其中的水是蒸发掉的(后文说锁定于永久冰冻层)。
选项B说,如果火星表面今天存在液态水的话,今天液态水的总量比过去可能存在的量要小得多。正确。该段提到过去可能有海洋、湖泊、河流等。根据第5段“astronomers have no direct evidence for liquid water anywhere on the surface of Mars today, and the amount of water vapor in the Martian atmosphere is tiny. Yet even setting aside the unproven hints of ancient oceans, the extent of the outflow channels suggests that a huge total volume of water existed on Mars in the past. ” 可知,火星现在有水的可能行非常小,而有证据支持过去有大量的水,可知B选项正确。题干提示第3段,而正确答案定位到第5段,这道题目确实是比较坑爹的。
选项C说,火星上的小型沟壑为火星近代存在液态水提供了可信的证据。不能推出。三段没有提到gullies,也没有提到recent past.
选项D说,火星大气中少量水蒸汽的存在暗示火星从来没有液态水。不能推出,该段没有说大气中有少量水蒸汽。整篇文章认为古代火星有大量水。
如果对题目有疑问,欢迎来提出你的问题,热心的小伙伴会帮你解答。