机经真题 1 Passage 2

纠错
置顶

Cryovolcanism on Titan

纠错

According to paragraph 2, information obtained from the Cassini spacecraft supports the idea that

Click on an oval to select your answer. To choose a different answer,

click one different oval.

  • A
    liquid methane or ethane on Titan's surface could be a source of methane gas in its atmosphere
  • B
    large bodies of liquid could exist on Saturn as well as on some of its moons
  • C
    the amount of methane on Titan's surface is similar to the amount of water on Earth's surface
  • D
    cryovolcanism could have produced large bodies of liquid on Titan's surface
显示答案
正确答案: A

我的笔记 编辑笔记

  • 原文
  • 译文


  • Titan, the largest moon orbiting the planet Saturn, has long been thought to be a likely place for volcanic activity. Volcanic activity requires internal heat. Titan's large size and substantial density suggest that plenty of gravitational and radioactively generated energy is available for melting its interior. Titan has a substantial layer of water-ammonia liquid lying beneath its surface. Therefore, unlike volcanism on Earth, which is the eruption of molten (melted) rock, volcanism on Titan would be cryovolcanism, which is essentially the eruption of icy water, sometimes mixed with other materials-likely ammonia and methane in Titan's case



    Titan's thick atmosphere is about ninety-five percent nitrogen, with a few percent of methane. The methane in Titan's atmosphere is broken down by sunlight so that it recombines with other constituents of the atmosphere, forming organic compounds such as ethane.For this process to continue, the methane must somehow be replenished. One thought is that large liquid bodies on the surface (perhaps liquid methane or ethane) could re-supply the atmospheric methane; at Titan's temperatures (-176°C at the surface), methane behaves much like water on Earth. The Cassini spacecraft, which orbited Saturn and studied the planet and its moons, revealed large bodies of liquid on Titan's surface, perhaps enough to replenish the atmospheric methane, but another possibility is that cryovolcanism supplies methane and other gases to the atmosphere.



    Cassini results suggest that cryovolcanism has indeed been a significant geological process on Titan. The craft carries a radar instrument that can peer through the clouds and haze to the never-before seen surface. It showed that several large liquid flows were spread across Titan's frigid landscape. Some, particularly those that appear to come out of craters (surface depressions), are likely to be cryovolcanic, though some researchers argue that some of these flows could possibly be rivers. Titan's surface has fluvial (river) activity, as shown by plenty of branched channels, indicating that rivers of liquid methane run there. Cryovolcanism can also cause flows, so the challenge is to identify which process caused a particular flow deposit. Some of the flows seen in the radar images are more likely to be cryovolcanic than fluvial, particularly those that appear to come out of craters. The craters are elongated rather than circular, indicating origin by volcanic eruptions rather than by impact (collision with objects from space). The association of flows with non-impact craters is hard to explain by any process other than volcanism. Titan may still be actively cryovolcanic: Cassini observed period brightening of infrared light at two locations that could not be explained by changes in cloud cover. It is possible that active cryovolcanism, perhaps in the form of the release of gas, causes the brightness changes. When the radar instrument observed these locations, they showed flow features that could be due to cryovolcanism.



    Whether or not Titan is currently actively volcanic, it is likely that it was in the past. The Huygens spacecraft, which landed on Titan on January 14, 2005, obtained other evidence that cryovolcanism may have occurred on Titan. Although the amazing surface images did not show any features that could be unambiguously interpreted as cryovolcanic, Huygens did make a surprising finding. It detected a variant of the element argon in Titan's atmosphere. This variant is formed from the element potassium, and its presence in the quantities measured means that the atmosphere must be in communication with a reservoir of potassium. Titan is large enough to have differentiated, that is, it evolved into compositionally distinct layers, with the denser materials sinking to the center. Therefore, it is likely that most of the potassium-bearing material is in the rocks that form Titan's core (center). Cryovolcanism would be one means by which this material might be brought to the surface.


  • 暂无译文

  • 官方解析
  • 网友贡献解析
  • 标签
    0 感谢 不懂
    解析

    A. 这是正确答案。文中提到“The Cassini spacecraft, which orbited Saturn and studied the planet and its moons, revealed large bodies of liquid on Titan's surface, perhaps enough to replenish the atmospheric methane...”,这直接支持了表面液态甲烷或乙烷可以补充大气中甲烷这一观点。

    B.  这个选项不正确。虽然 Cassini 探测器确实研究了土星及其卫星,但文中只提到了它发现了 Titan 表面有大量液体,并没有提及土星表面存在液体。

    C.  这个选项不正确。文中提到甲烷在 Titan 的温度下行为类似于地球上的水,但并没有比较 Titan 表面甲烷的量与地球上水的量。

    D.  这个选项不正确。文中确实提到冰火山(cryovolcanism)可能补充甲烷和其他气体进大气层,但没有说冰火山产生了这些大液体体。

题目讨论

如果对题目有疑问,欢迎来提出你的问题,热心的小伙伴会帮你解答。

最新提问