机经真题 7 Passage 2

纠错
置顶

Animal Locomotion

纠错

Directions: An introductory sentence for a brief summary of the passage is provided below. Complete the summary by selecting the THREE answer choices that express the most important ideas in the passage. Some sentences do not belong in the summary because they express ideas that are not presented in the passage or are minor ideas in the passage. This question is worth 2 points. Drag your choices to the spaces where they belong. To review the passage, select View Passage.

Drag your answer choices to the spaces where they belong. To remove an answer choice, click on it.To review the passage, click VIEW TEXT.

Animal Iocomotion occurs in a limited number of forms, with key differences determined by which medium (air, land, or water) the animal moves through.

显示答案
正确答案: C E F
  • A.
    The amount of energy an animal spends on motion depends on a number of factors, including whether or not it migrates and how far it travels per day.
  • B.
    Because of the relative lack of friction, swimming is in many ways the ideal form of locomotion and has evolved on four separate occasions.
  • C.
    Because they cannot glide, terrestrial animals spend the most energy on locomotion, but they minimize friction by limiting their contact with the ground.
  • D.
    Whether they run, swim, or fly, most animals allocate a certain area of their body to motion and leave the rest free for other purposes, such as defense.
  • E.
    Thanks to their streamlining and the buoyancy of water, fish expend relatively little energy on locomotion, as long as they swim fairly slowly.
  • F.
    Flying provides numerous advantages but also requires that the animal remain fairly small and have relatively massive back and pectoral muscles.

我的笔记 编辑笔记

  • 原文
  • 译文


  • Animal locomotion occurs in only a limited number of forms, including swimming, flying, walking, running, crawling, sliding, or jumping. In all cases, animals experience certain constraints to locomotion. For example, animals must overcome frictional forces (drag) generated by the air, water, or surface of the Earth. In addition, all forms of locomotion require energy to provide thrust, defined as the forward motion of an animal in any environment, and/or lift, which is movement against gravity.



    In water, the greatest challenge to locomotion is the density of the water, which is much greater than that of air. The resistance to movement posed by the density of water increases exponentially as the speed of locomotion increases, which is one reason why many fish swim at relatively slow speeds. Overcoming this resistance requires considerable muscular effort. Most swimming animals, including fish, amphibians, reptiles, and marine animals have evolved streamlined bodies that reduce drag and make swimming more efficient. An energetic advantage to swimming is that fish and other swimmers do not need to provide lift to overcome gravity. Because the density of the water is similar to that of an animal's body, water provides buoyancy, which helps support the animal's weight.



    The mechanism of swimming is similar among many different vertebrates. Most fish, for example, contract posterior skeletal muscles to move the tail end of the animal back and forth. This pushes water backward and propels the fish forward. Other fins provide additional thrust and enable changes in direction. Likewise, amphibians and marine reptiles rely predominantly on their hind legs for propulsion through the water. Confining most of the swimming muscles to the rear of an animal's body has other advantages. With the rear end devoted to movement, the front end is free to explore the environment, fight off aggressors, or find food.



    Due to streamlining, the relatively slow speed of most swimmers, and the buoyancy of water, swimming is the cheapest form of locomotion in terms of energy spent. In contrast, locomotion on land is, on average, the energetically costliest means of locomotion. Flying may seem costlier, but it is not. Many migratory birds can travel hundreds of miles daily for many days. No terrestrial animal could possibly match such a feat by walking or running.



    Whereas gravity is not an important factor for locomotion in swimming animals, terrestrial animals must overcome gravity each time they take a step. Of even greater importance to walking or running animals, though, is the necessity of accelerating and decelerating the limbs with every step. In essence, each step is like starting a movement from scratch, without the luxury of occasionally gliding through water or air as fish and birds do. This challenge is even greater when an animal moves uphill or over rough terrain. Apart from mollusks, which move along the surface of the Earth on a layer of secreted mucus, and snakes, which undulate along the ground on a portion of their ventral body surface, most terrestrial animals limit the amount of contact with the ground while moving, thereby minimizing the amount of friction they encounter.



    Flying is a highly successful means of locomotion, having evolved on four occasions: in pterosaurs (extinct reptiles), insects, birds, and mammals (bats). The advantages to flying are numerous. Animals can escape land-based predators, scan their surroundings over great distances, and inhabit environments such as high cliffs that may be inaccessible to non-flying animals. The mechanisms of flying, however, require animals to overcome gravity and air resistance, which makes flying energetically costlier than swimming but still cheaper than running on land. As with swimming, resistance to flight is decreased by streamlined bodies. However, earthbound animals have one advantage over their flying cousins-they can grow to much larger sizes than animals that fly. In flying vertebrates, lift and thrust are provided by pectoral and back muscles that move the wings. The pectoral muscles are so powerful and massive that they constitute as much as 15-20 percent of a bird's total body mass and up to 30 percent in humming-birds, which use their wings not only to fly but also to hover. The requirement for larger, strong pectoral muscles is one reason why the remaining body mass of flying vertebrates is limited.


  • 暂无译文

  • 官方解析
  • 网友贡献解析
  • 标签
    0 感谢 不懂
    解析

    A. 错误。文章没有深入讨论迁徙和每日行程距离这些对运动能量消耗的影响。这是一个与文章主要观点无关的次要细节。

    B. 错误。虽然游泳由于较低摩擦在能量消耗方面有优势,但“游泳在很多方面是理想的运动形式,已经进化了四次”这一说法并不准确。文章提到飞行有四次独立进化,而不是游泳。

    C. 正确。段落详细解释了陆地动物由于需要每步骤伐起始运动,并且无法像在水中或空中那样滑行,因此花费最多的能量。为了减少摩擦,它们限制了与地面的接触量。

    D. 错误。虽然提到一些动物将身体一部分用于运动,另一部分用于其他目的,但并未涵盖文章的主要观点,文章更侧重于解释不同运动形式在不同环境中的差异以及能量消耗问题。

    E. 正确。这段讨论了鱼类和其他游泳动物由于流线型体型以及水的浮力,在缓慢游泳时消耗较少的能量。

    F. 正确。这段说明了飞行带来的多种优势,以及需要动物保持较小体型并拥有巨大的背部和胸肌。

题目讨论

如果对题目有疑问,欢迎来提出你的问题,热心的小伙伴会帮你解答。

最新提问