This is Scientific American 60-Second Space. I'm Clara Moskowitz. Got a minute?
The universe seems to be full of dark matter, yet no one knows what it's made of.
The best guess is that invisible particles called weakly interacting massive particles, or WIMPs, contribute all this missing mass.
And that idea matches the latest data generated by the Alpha Magnetic Spectrometer, or AMS experiment.
This instrument lives on the International Space Station, and it may be seeing direct signs of dark matter.
The study is in the journal Physical Review Letters.
The AMS catches charged particles flying through space.
Its new results show more positrons than expected.
Positrons are the antimatter counterparts to electrons.
Normal astrophysical processes create some positrons, but not as many as AMS registered.
One possible explanation is that these excess positrons are a by-product of dark matter interactions.
That is, they're being created by the elusive WIMPs.
When two WIMPs collide, they can annihilate each other, giving rise to other particles, such as positrons.
The data from AMS so far match these predictions.
The positrons might also have a more mundane source, such as the spinning stars called pulsars.
Time will tell if the space-based AMS has indeed seen the first sign of what makes up dark matter, or if we're still stuck in the dark.
Thanks for the minute, for Scientific American 60-Second Space. I'm Clara Moskowitz.
如果对题目有疑问,欢迎来提出你的问题,热心的小伙伴会帮你解答。
精听听写练习