句间停顿:
  • 1S
  • 3S
  • 5S
语速: x 1.0
  • 速度0.8X
  • 速度1.0X
  • 速度1.2X
  • 速度1.5X
  • 速度1.8X
  • 速度2X
始终显示原文
欢迎使用 KMF 精听精研
坚持练习精听,反复听、吃透每个句子,能够快速 提升听力能力
开始精听
或按 「 空格」开始播放

段落1

NARRATOR

Listen to part of a lecture in an astronomy class.

点击显示原文

隐藏原文=
显示译文
旁白:听下面一段天文学课堂的讲解。

段落2

MALE PROFESSOR

Today I want to talk about a paradox that ties in with the topic we discussed last time.

点击显示原文

隐藏原文=
显示译文
教授:今天,我想讲一下与上次我们讨论的话题相关的一个悖论。

We were discussing the geological evidence of water- liquid water- on Earth and Mars three to four billion years ago.

点击显示原文

隐藏原文=
显示译文
上次我们讨论了三四十亿年前在地球和火星上有关水及液态水的地质证据。

So what evidence of a liquid water environment did we find in rock samples taken from the oldest rocks on Earth?

点击显示原文

隐藏原文=
显示译文
那么我们在地球上最古老的岩石样品中发现了什么液态水环境的证据呢?

段落3

MALE STUDENT

Uh, like pebbles... fossilized algae...

点击显示原文

隐藏原文=
显示译文
学生:呃,比如鹅卵石,或者水藻化石?

段落4

MALE PROFESSOR

Right. And on Mars?

点击显示原文

隐藏原文=
显示译文
教授:对的。那么在火星上呢?

段落5

FEMALE STUDENT

Dry channels...

点击显示原文

隐藏原文=
显示译文
学生:干涸的水道?

段落6

MALE PROFESSOR

Good... all evidence of water in liquid form-large quantities of it.

点击显示原文

隐藏原文=
显示译文
教授:很好。有大量液态水存在的证据。

Now remember when we talked about star formation, we said that as a star ages, it becomes brighter.

点击显示原文

隐藏原文=
显示译文
还记得我们讲过恒星的形成,就是说恒星越老,就变得越亮。

Right? Hydrogen turns into helium, which releases energy.

点击显示原文

隐藏原文=
显示译文
氢变成氦的时候会释放能量。

So our standard model of star formation suggests that the Sun wasn't nearly as bright three to four billion years ago as it is today, which means that temperatures on Earth and Mars would have been lower... which, in turn, suggests...?

点击显示原文

隐藏原文=
显示译文
因此恒星形成的标准模式就暗示出我们太阳的亮度在三十到四十亿年前远不如今天的太阳,这也就意味着当时地球和火星的温度比现在更低,那就暗示着…

段落7

MALE STUDENT

There would have been ice on Earth or Mars...?

点击显示原文

隐藏原文=
显示译文
学生:那地球和火星上就都是冰了?

段落8

MALE PROFESSOR

Correct... if the young Sun was much fainter and cooler than the Sun today, liquid water couldn't have existed on either planet.

点击显示原文

隐藏原文=
显示译文
教授:对。如果早期的太阳比现在暗淡,温度也没有这么炙热的话,那么液态水就不可能在这两个星球上存在。

Now, this apparent contradiction between geologic evidence and the stellar evolution model became known as "the faint young Sun paradox."

点击显示原文

隐藏原文=
显示译文
目前,地质证据和恒星进化模式之间的矛盾就是大家众所周知的早期太阳悖论。

段落9

Now, there have been several attempts to solve this paradox.

点击显示原文

隐藏原文=
显示译文
现在,许多人试图解开这个悖论。

First there was the greenhouse-gas solution.

点击显示原文

隐藏原文=
显示译文
首先能解释这个悖论的就是温室气体。

Well, you're probably familiar with the greenhouse gas effect, so I won't go into details now.

点击显示原文

隐藏原文=
显示译文
呃,你们可能已经很熟悉温室气体效应了,我就不多说了。

The idea was that trapped greenhouse gases in the atmospheres of Earth and Mars might have caused temperatures to rise enough to compensate for the low heat the young Sun provided.

点击显示原文

隐藏原文=
显示译文
这个理论就是说在地球和火星的大气层里有足够的温室气体来帮助提升温度,从而弥补了年轻时期的太阳提供的较低的热度。

And so it would have been warm enough on these planets for liquid water to exist.

点击显示原文

隐藏原文=
显示译文
这样就有足够的温度让这些星球上的水以液化形式存在了。

So what gas do you think was the first suspect in causing the greenhouse effect?

点击显示原文

隐藏原文=
显示译文
那么,我们最先想到的是什么气体能导致温室效应呢?

段落10

FEMALE STUDENT

Um, carbon dioxide, I guess... like today?

点击显示原文

隐藏原文=
显示译文
学生:呃,我想是 二氧化碳,和今天一样?

段落11

In fact, studies indicate that four billion years ago, carbon dioxide levels in the atmosphere were much higher than today's levels.

点击显示原文

隐藏原文=
显示译文
事实上,研究显示在四十亿年前,二氧化碳在大气层中的比重远比今天的要高。

But the studies also indicate that they weren't high enough to do the job-make up for a faint Sun.

点击显示原文

隐藏原文=
显示译文
但是研究也显示当时二氧化碳的量还不足以来弥补太阳没能提供的热度。

Well, then, some astronomers came up with the idea that atmospheric ammonia may have acted as a greenhouse gas, but ammonia would have been destroyed by the ultraviolet light coming from the Sun, and it had to be ruled out, too.

点击显示原文

隐藏原文=
显示译文
然后天文学家们就有另外一个想法,就是大气氨可能扮演了温室气体的角色,但是氨气就会被来自太阳的紫外线所分解,所以氨气一定会被排除。

段落12

Another solution, mm, which was proposed much later, was that perhaps the young Sun wasn't faint at all. Perhaps it was bright.

点击显示原文

隐藏原文=
显示译文
后来提出的另一种解决方案,就是早期的太阳根本不暗淡,也许是明亮的。

So it's called the "bright young Sun" solution, according to which the Sun would have provided enough heat for the water on Earth and Mars to be liquid.

点击显示原文

隐藏原文=
显示译文
因此我们称为“明亮的早期太阳”解决方案,根据这个解决方法,太阳可以为地球和火星上的液态水提供足够的热量。

But how could the early Sun be brighter and hotter than predicted by the standard model?

点击显示原文

隐藏原文=
显示译文
但是早期太阳怎么会比按照标准模式预测的更明亮更炙热呢?

Well, he answer is "mass."

点击显示原文

隐藏原文=
显示译文
呃,答案就是质量。

段落13

MALE STUDENT

You mean the Sun had more mass when it was young?

点击显示原文

隐藏原文=
显示译文
学生:你的意思是说早期的太阳质量更大。

段落14

MALE PROFESSOR

Well, if the young Sun was more massive than today's, it would have been hotter and brighter than the model predicts.

点击显示原文

隐藏原文=
显示译文
教授:呃,如果早期的太阳比今天的太阳质量更大,那么它就会比预测的更加炙热和明亮。

But this would mean that it has lost mass over the course of four billion years.

点击显示原文

隐藏原文=
显示译文
但是这也意味着在过去的四十亿年的进程中,它的质量也在大大降低。

段落15

FEMALE STUDENT

Is that possible?

点击显示原文

隐藏原文=
显示译文
学生:这个可能吗?

段落16

Actually, the Sun is constantly losing mass through the solar wind... a stream of charged particles constantly blowing off the Sun.

点击显示原文

隐藏原文=
显示译文
事实上,在太阳风的影响下,太阳的质量一直在下降,一股带电粒子流不断地从太阳上吹落。

We know the Sun's current rate of mass loss... but if we assume that this rate has been steady over the last four billion years, the young Sun wouldn't have been massive enough to have warmed Earth, let alone Mars- not enough to have caused liquid water.

点击显示原文

隐藏原文=
显示译文
我们知道目前太阳质量的减少率,但是假如这个减少率在过去四十亿年间一直都没有改变的话,早期的太阳就不可能有足够的质量来给地球提供温度,就不用说火星了,不可能有足够的热量使液态水存在的。

段落17

MALE STUDENT

Maybe the solar wind was stronger then?

点击显示原文

隐藏原文=
显示译文
学生:也许那时候的太阳风更强烈呢?

段落18

There is evidence that the solar wind was more intense in the past, but we don't know for sure how much mass our Sun's lost over the last four billion years.

点击显示原文

隐藏原文=
显示译文
的确有证据显示太阳风在以前是更加强烈的,但是我们不能确切的知道在过去这四十亿年中太阳到底减少了多少质量。

Astronomers tried to estimate what solar mass could produce the required luminosity to explain liquid water on these planets.

点击显示原文

隐藏原文=
显示译文
天文学家试图去推测,太阳质量是多少才能产生需要的发光度来解释这两个星球上的液体水。

They also took into account that with a more massive young Sun, the planets would be closer to the Sun than they are today.

点击显示原文

隐藏原文=
显示译文
他们还考虑到如果早期的太阳质量更大,那么这两个行星会比目前更靠近太阳。

And they found that about seven percent more mass would be required.

点击显示原文

隐藏原文=
显示译文
他们发现太阳的质量需要大 7%才成。

段落19

FEMALE STUDENT

So the young Sun had seven percent more mass than our Sun?

点击显示原文

隐藏原文=
显示译文
学生:所以说早期的太阳比现在的太阳质量大 7%?

段落20

MALE PROFESSOR

Well, we don't know.

点击显示原文

隐藏原文=
显示译文
教授:呃,这个我们还不知道。

According to observations of young Sun-like stars, our Sun may have lost as much as six percent of its initial mass, which doesn't quite make it.

点击显示原文

隐藏原文=
显示译文
根据对其它早期类太阳恒星的观察,推断出我们的太阳可能比原始的质量小了 6%,但这并不能说明问题。

On the other hand, this estimate is based on a small sample, and the "bright young Sun" solution is appealing.

点击显示原文

隐藏原文=
显示译文
另一方面,这一推测仅仅是基于小部分的样本得出的,而且“明亮的早期太阳”解决方案也很有可能。
We simply need more data to determine the <em class="nice-card js-hover-card">mass-loss rate</em> of stars.

We simply need more data to determine the mass-loss rate of stars.

点击显示原文

隐藏原文=
显示译文
我们只是需要更多的数据来确定恒星的质量减少率。

So there's reason to believe that we'll get an answer to that piece of the puzzle one day.

点击显示原文

隐藏原文=
显示译文
所以我们有理由相信总有一天我们能得到这个谜的答案。
[ < 空格 > ]
当前句 /
/
  • 段落1
  • 第 1 句
  • 段落2
  • 第 2 句
  • 第 3 句
  • 第 4 句
  • 段落3
  • 第 5 句
  • 段落4
  • 第 6 句
  • 段落5
  • 第 7 句
  • 段落6
  • 第 8 句
  • 第 9 句
  • 第 10 句
  • 第 11 句
  • 段落7
  • 第 12 句
  • 段落8
  • 第 13 句
  • 第 14 句
  • 段落9
  • 第 15 句
  • 第 16 句
  • 第 17 句
  • 第 18 句
  • 第 19 句
  • 第 20 句
  • 段落10
  • 第 21 句
  • 段落11
  • 第 22 句
  • 第 23 句
  • 第 24 句
  • 段落12
  • 第 25 句
  • 第 26 句
  • 第 27 句
  • 第 28 句
  • 段落13
  • 第 29 句
  • 段落14
  • 第 30 句
  • 第 31 句
  • 段落15
  • 第 32 句
  • 段落16
  • 第 33 句
  • 第 34 句
  • 段落17
  • 第 35 句
  • 段落18
  • 第 36 句
  • 第 37 句
  • 第 38 句
  • 第 39 句
  • 段落19
  • 第 40 句
  • 段落20
  • 第 41 句
  • 第 42 句
  • 第 43 句
  • 第 44 句
  • 第 45 句

+ 创建收藏夹
保存 取消