Official 01 Set 3

  • Q1
  • Q2
  • Q3
  • Q4
  • Q5
  • Q6

Uranium-Lead Dating

  • Q1
  • Q2
  • Q3
  • Q4
  • Q5
  • Q6
What does the professor mainly discuss?
  • A. The difference in age among American mountain ranges

  • B. The importance of a technique used for dating geological materials

  • C. The recent discovery of an ancient canyon

  • D. A comparison of various minerals used for dating

显示答案 正确答案: B
  • 原文
  • 译文
  • 查看听力原文


    NARRATOR:Listen to part of a lecture in a geology class.

    MALE PROFESSOR:Ok, let's get started.Great—today I want to talk about a way in which we are able to determine how old a piece of land or some other geologic feature is. Dating techniques.I'm gonna to talk about a particular dating technique. Why?Good dating is key to good analysis.In other words, if you want to know how a land formation was formed, the first thing you probably want to know is how old it is. It's fundamental.

    Uh... Take the Grand Canyon for instance. Now, we geologists thought we had a pretty good idea of how the Grand Canyon in the southwestern United States was formed. We knew that it was formed from sandstone that solidified somewhere between 150 and 300 million years ago.Before it solidified, it was just regular sand—essentially, it was part of a vast desert.And until just recently, most of us thought the sand had come from an ancient mountain range fairly close by that flattened out over time.That's been the conventional wisdom among geologists for quite some time.

    But now we've learned something different and quite surprising using a technique called Uranium-Lead Dating.I should say that Uranium-Lead Dating has been around for quite a while. But there have been some recent refinements—I'll get into this in a minute.Anyway, Uranium-Lead Dating has produced some surprises.Two geologists discovered that about half of the sand from the Grand Canyon was actually once part of the Appalachian Mountains. That's really eye-opening news, since the Appalachian Mountain Range is, of course, thousands of kilometers to the east of the Grand Canyon. Sounds pretty unbelievable, right? Of course, the obvious question is how did that sand end up so far west?The theory is that huge rivers and wind carried the sand west where it mixed in with the sand that was already there.

    Well, this was a pretty revolutionary finding. uh, and it was basically because of uranium-lead dating.Why? [pause] Well, as everyone in this class should know, we usually look at the grain type within sandstone, meaning the actual particles in the sandstone, to determine where it came from.You can do other things too, like look at the wind or water that brought the grains to their location and figure out which way it was flowing. But that's only useful up to a point, and that's not what these two geologists did. Uranium-Lead Dating allowed them to go about it in an entirely different way. What they did was: they looked at the grains of Zircon in the sandstone. Zircon is a material that contains radioactive Uranium, which makes it very useful for dating purposes. Zircon starts off as molten magma, the hot lava from volcanoes. This magma then crystallizes. And when Zircon crystallizes, the Uranium inside it begins to change into Lead.So if you measure the amount of Lead in the Zircon grain, you can figure out when the grain was formed. After that, you can determine the age of Zircon from different mountain ranges.Once you do that, you can compare the age of the Zircon in the sandstone in your sample to the age of the Zircon in the mountains. If the age of the Zircon matches the age of one of the mountain ranges, then it means the sandstone actually used to be part of that particular mountain range. Is everybody with me on that? Good. So, in this case, Uranium-Lead Dating was used to establish that half of the sandstone in the samples was formed at the same time the granite in the Appalachian Mountains was formed. So because of this, this new way of doing Uranium-Lead Dating, we've been able to determine that one of our major assumptions about the Grand Canyon was wrong.

    Like I said before, Uranium-Lead Dating has been with us for a while. But, um... until recently, in order to do it, you really had to study many individual grains. And it took a long time before you got results.It just wasn't very efficient. And it wasn't very accurate.But technical advances have cut down on the number of grains you have to study, so you get your results faster. So I'll predict that Uranium-Lead Dating is going to become an increasingly popular dating method.

    There are a few pretty exciting possibilities for Uranium-Lead Dating. Here is one that comes to mind. You know the theory that earth's continents were once joined together and only split apart relatively recently?Well, with Uranium-Lead Dating, we can prove that more conclusively.If they show evidence of once having been joined, that could really tell us a lot about the early history of the planet's geology.

  • 旁白:听一段地质学课程。


    嗯,举个大峡谷的例子。现代地质学家认为我们已经形成了一个没有太多瑕疵的关于美国西南部大峡谷起源的假说。我们推测它的形成源于15 至30 亿年前砂岩的凝固。在成型之前,这些本质上是普通的沙子,沙漠的一部分。但最近,大多数人认为这些沙子来源于一个古代峰峦相近的山脉,随着时间的推移,它变得平缓了。这是相当长一段时间在地质学家中的传统观点。





  • 官方解析
  • 网友贡献解析
  • 本题对应音频:
    6 感谢 5 不懂



    That’s been the conventional wisdom among geologists for quite some time. But now we’ve learned something different and quite surprising using a 

    technique called uranium-lead dating.


    文章开头讲到dating technique,又说it's foundamental。接着说了我们对Grand Canyon旧有的认知,然后转折说现在发现了一些令人惊讶的difference,然后引出,uranium-lead dating,并且之后的文本也都在说这种技术。因此答案选B。






Uranium-Lead Dating